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Exercise set 4 - Kinematics 

Reminders 
Simplified notation of sines and cosines 
To simplify the notation, we use: 

 sin (θ1) = s1 
 cos (θ1) = c1 
 1 - cos (θ1) = v1 
 sin (θ2) = s2 
 cos (θ2) = c2 
 1 - cos (θ2) = v2 
 cos (θ1 + θ2) = c1 + 2 
 sin (θ1 + θ2) = s1 + 2 
 L1 + L2 = L1 + 2 

Exercise 1 
In this exercise you will work on the geometric model of the SCARA robot. Here we won’t consider the rotation of 
the end effector. The output point will be the point P at the extremity of the second segment L2 (see figure).  
 
Give the direct geometric model (DGM) that expresses the coordinates (x, y) of point P as a function of the joint 
coordinates q1 and  q2. 
 
Hint: use the homogeneous matrices of the following transformations: 
1. Rotation of q2 around P10 with coordinates (L1 , 0) 
2. Rotation of q1 around the origin 

 

 
  

 q1 

q2 

q3 
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Exercise 1 – Solution 
To obtain the direct geometric model that expresses the coordinates (x, y) of the end effector P as a function of the 
joint coordinates q1 and q2. To do so, we first put the robot in its reference position (figure below) and then 
respectively develop the homogenous matrices at each joint, starting from the last one. 

 
Figure: The robot in its reference position 

 
Secondly, we develop the homogenous matrices associated with each of the joints, namely: 

1. Homogenous matrix corresponding to the rotation q2 around the point P10  with coordinates (L1 , 0)  
2. Homogenous matrix corresponding to the rotation of q1 around the origin  

 

Lastly, we express the direct geometric model by multiplying the sequence of the homogenous matrices starting 
with the last transformation to the first as described in the lecture. 
 
We recall that the homogeneous matrix for a rotation around an arbitrary point p is expressed as: 

𝐻𝐻 =  �𝑅𝑅 𝑝𝑝 − 𝑅𝑅𝑅𝑅
0 1 �. 

By using this relation, we calculate the homogeneous matrices of the transformations described in the hint. The 
homogenous matrix 𝐻𝐻2, corresponding to the rotation with q2 around the point P10, with the coordinates (L1 , 0) is 
then: 

𝐻𝐻2 = �𝑅𝑅2 𝑝𝑝10 − 𝑅𝑅2𝑝𝑝10
0 1 �. 

𝑝𝑝10 − 𝑅𝑅2𝑝𝑝10 = �𝐿𝐿10 � −   �
𝑐𝑐2 −𝑠𝑠2
𝑠𝑠2 𝑐𝑐2 �  �𝐿𝐿10 � =  �𝐿𝐿1 −  𝑐𝑐2𝐿𝐿1 

−𝑠𝑠2𝐿𝐿1
�  = �𝐿𝐿1(1 −  𝑐𝑐2)∗

−𝐿𝐿1𝑠𝑠2
�  =   � 𝐿𝐿1𝑣𝑣2−𝐿𝐿1𝑠𝑠2

�   

* We recall that 1 - cos (q2) = v(q2)  (definition of the versine function: link)  
Thus, 

𝑯𝑯𝟐𝟐 = �𝑅𝑅2 𝑝𝑝10 − 𝑅𝑅2𝑝𝑝10
0 1 �= �

𝑐𝑐2 −𝑠𝑠2 𝐿𝐿1𝑣𝑣2
𝑠𝑠2 𝑐𝑐2 −𝐿𝐿1𝑠𝑠2
0 0 1

� 

The homogenous matrix H1, corresponding to the rotation q1 around the origin, is expressed as follows: 

𝑯𝑯𝟏𝟏 =  �
𝑐𝑐1 −𝑠𝑠1 0
𝑠𝑠1 𝑐𝑐1 0
0 0 1

� 

The combined homogenous matrix of the sequence of the two rotations, respectively represented by the 
homogenous matrix H2 (of angle q2) then H1 (of angle q1), is equal to the following product:  

𝑯𝑯 =  𝑯𝑯𝟏𝟏𝑯𝑯𝟐𝟐 = �
𝑐𝑐1 −𝑠𝑠1 0
𝑠𝑠1 𝑐𝑐1 0
0 0 1

� . �
𝑐𝑐2 −𝑠𝑠2 𝐿𝐿1𝑣𝑣2
𝑠𝑠2 𝑐𝑐2 −𝐿𝐿1𝑠𝑠2
0 0 1

� =  �
𝑐𝑐1+2 −𝑠𝑠1+2 𝐿𝐿1(𝑐𝑐1𝑣𝑣2 + 𝑠𝑠1𝑠𝑠2)
𝑠𝑠1+2 𝑐𝑐1+2 𝐿𝐿1(𝑠𝑠1𝑣𝑣2 − 𝑐𝑐1𝑠𝑠2)

0 0 1
� 

To find the coordinates (x, y) of the point P (which is the Tool Center Point), we proceed as follows: 

�
𝑥𝑥
𝑦𝑦
1
� = 𝑯𝑯 ∗ 𝑷𝑷𝟐𝟐𝟐𝟐  

 

https://en.wikipedia.org/wiki/Versine
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Thus, 

�
𝑥𝑥
𝑦𝑦
1
� = 𝑯𝑯 ∗ �

𝐿𝐿12
0
1
�  

Once we use the calculated homogenous matrix, that gives the following result: 

�
𝑥𝑥
𝑦𝑦
1
� = �

𝐿𝐿1𝑐𝑐1 + 𝐿𝐿2𝑐𝑐1+2
𝐿𝐿1𝑠𝑠1 + 𝐿𝐿2𝑠𝑠1+2

1
� 

 

Exercise 2 
In this exercise we take the output point as the tip of the end effector, as shown in the figures below. Therefore, 
here we consider the rotation of the end effector given by q3. In addition, as illustrated in the right figure below, 
we consider the possible translation along z given by q4.  

The reference position of the end effector is 𝑃𝑃(𝜃𝜃𝑖𝑖 = 0) =  �
𝑥𝑥0
0
𝑧𝑧0
� =  �

𝐿𝐿1+2+3
0
𝑧𝑧0

�. Give the position P(qi) as a function 

of the variables qi. 

 

Exercise 2 – Solution 
To obtain the direct geometric model that expresses the coordinates (x, y, z) of the end effector P as a function of 
the joint coordinates q1, q2, q3 and q4, we first put the robot in its reference position (figure below) and then 
respectively develop the homogenous matrices at each joint, starting from the last coordinate. 

 

Figure: The robot in its reference position 

Secondly, we develop the homogenous matrices associated with each of the joints, namely: 
1. Homogenous matrix associated with the translation q4 in the direction of z axis at the point P20 
2. Homogenous matrix corresponding to the rotation q3 around P20 with coordinates (L1+2 , 0, 0)  
3. Homogenous matrix corresponding to the rotation of q2 around P10, with coordinates (L1 , 0, 0)  
4. Homogenous matrix corresponding to the rotation of q1 around the origin.  
 
 

 q1 

q2 

q3 q1 q2 q3 

q4 
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Finally, we express the direct geometric model by multiplying the sequence of the homogenous matrices, starting 
from the last transformation to the first, by the output point P0 when the robot is at its reference position, here the 
point is P  with coordinates (L1+2+3 , 0, z0) as shown in the figure. 
In the same way as before, the homogeneous matrix for a rotation around an arbitrary point p is expressed as:  

𝐻𝐻 =  �𝑅𝑅 𝑝𝑝 − 𝑅𝑅𝑅𝑅
0 1 �. 

Therefore, we can calculate the homogeneous matrices of the transformations described in points 1, 2, 3 and 4.  

The homogenous matrix 𝐻𝐻4, associated with the translation q4, is: 

𝑯𝑯𝟒𝟒 = �

1 0 0 0
0 1 0 0
0 0 1 𝑞𝑞4
0 0 0 1

� [Pure translation] 

The homogenous matrix 𝐻𝐻3, corresponding to the rotation of q3 around P20 with coordinates (L1+2 , 0, 0), is: 

𝐻𝐻3 = �𝑅𝑅𝑧𝑧3 𝑝𝑝20 − 𝑅𝑅𝑧𝑧3𝑝𝑝20
0 1 �. 

𝑝𝑝20 − 𝑅𝑅𝑧𝑧3𝑝𝑝20 = �
𝐿𝐿1+2

0
0
� −    �

𝑐𝑐3 −𝑠𝑠3 0
𝑠𝑠3 𝑐𝑐3 0
0 0 1

�  �
𝐿𝐿1+2

0
0
� =  �

𝐿𝐿1+2 −  𝑐𝑐3𝐿𝐿1+2 
−𝑠𝑠3𝐿𝐿1+2

0
�  =  �

𝐿𝐿1+2𝑣𝑣3
−𝐿𝐿1+2𝑠𝑠3

0
�   

We then have: 

𝑯𝑯𝟑𝟑 = �

𝑐𝑐3 −𝑠𝑠3 0 𝐿𝐿1+2𝑣𝑣3
𝑠𝑠3 𝑐𝑐3 0 −𝐿𝐿1+2𝑠𝑠3
0 0 1 0
0 0 0 1

� 

The homogenous matrix 𝐻𝐻2, corresponding to the rotation q2 around an axis parallel to the z axis and passing 
through the point P10 with the coordinates (L1 , 0, 0), is: 

𝑯𝑯𝟐𝟐 =  �

𝑐𝑐2 −𝑠𝑠2 0 𝐿𝐿1𝑣𝑣2
𝑠𝑠2 𝑐𝑐2 0 −𝐿𝐿1𝑠𝑠2
0 0 1 0
0 0 0 1

� 

The homogenous matrix 𝐻𝐻1, corresponding to the rotation q1 around the axis z, is: 

𝑯𝑯𝟏𝟏 = �

𝑐𝑐1 −𝑠𝑠1 0 0
𝑠𝑠1 𝑐𝑐1 0 0
0 0 1 0
0 0 0 1

�  

The sequence of the 3 rotations and the translation, each represented by its corresponding homogenous matrix, is 
then expressed by the following product: 

𝑯𝑯 =  𝑯𝑯𝟏𝟏𝑯𝑯𝟐𝟐𝑯𝑯𝟑𝟑𝑯𝑯𝟒𝟒
(∗) 

𝑯𝑯 = �

𝑐𝑐1 −𝑠𝑠1 0 0
𝑠𝑠1 𝑐𝑐1 0 0
0 0 1 0
0 0 0 1

�  �

𝑐𝑐2 −𝑠𝑠2 0 𝐿𝐿1𝑣𝑣2
𝑠𝑠2 𝑐𝑐2 0 −𝐿𝐿1𝑠𝑠2
0 0 1 0
0 0 0 1

�  �

𝑐𝑐3 −𝑠𝑠3 0 𝐿𝐿1+2𝑣𝑣3
𝑠𝑠3 𝑐𝑐3 0 −𝐿𝐿1+2𝑠𝑠3
0 0 1 0
0 0 0 1

��

1 0 0 0
0 1 0 0
0 0 1 𝑞𝑞4
0 0 0 1

� 

(*) Note that the translation q4 is carried out first before q3 in the implementation order as mentioned in the lecture.  

Similar to the previous exercise, in order to find the (x,y,z) coordinates of P, one should use the following formula: 

�

𝒙𝒙
𝒚𝒚
𝒛𝒛
𝟏𝟏

� = �

𝑐𝑐1 −𝑠𝑠1 0 0
𝑠𝑠1 𝑐𝑐1 0 0
0 0 1 0
0 0 0 1

�  �

𝑐𝑐2 −𝑠𝑠2 0 𝐿𝐿1𝑣𝑣2
𝑠𝑠2 𝑐𝑐2 0 −𝐿𝐿1𝑠𝑠2
0 0 1 0
0 0 0 1

�  �

𝑐𝑐3 −𝑠𝑠3 0 𝐿𝐿1+2𝑣𝑣3
𝑠𝑠3 𝑐𝑐3 0 −𝐿𝐿1+2𝑠𝑠3
0 0 1 0
0 0 0 1

��

1 0 0 0
0 1 0 0
0 0 1 𝑞𝑞4
0 0 0 1

��

𝑳𝑳𝟏𝟏+𝟐𝟐+𝟑𝟑
𝟎𝟎
𝒛𝒛𝟎𝟎
𝟏𝟏

� 
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= �

𝑐𝑐1+2 −𝑠𝑠1+2 0 𝐿𝐿1(𝑐𝑐1𝑣𝑣2 + 𝑠𝑠1𝑠𝑠2)
𝑠𝑠1+2 𝑐𝑐1+2 0 𝐿𝐿1(𝑠𝑠1𝑣𝑣2 − 𝑐𝑐1𝑠𝑠2)

0 0 1 0
0 0 0 1

��

𝑐𝑐3 −𝑠𝑠3 0 𝐿𝐿1+2𝑣𝑣3
𝑠𝑠3 𝑐𝑐3 0 −𝐿𝐿1+2𝑠𝑠3
0 0 1 0
0 0 0 1

��

1 0 0 0
0 1 0 0
0 0 1 𝑞𝑞4
0 0 0 1

��

𝐿𝐿1+2+3
0
𝑧𝑧0
1

� 

= �

𝑐𝑐1+2+3 −𝑠𝑠1+2+3 0 𝐿𝐿1(𝑐𝑐1𝑣𝑣2 + 𝑠𝑠1𝑠𝑠2) + 𝐿𝐿1+2(𝑐𝑐1+2𝑣𝑣3 + 𝑠𝑠1+2𝑠𝑠3)
𝑠𝑠1+2+3 𝑐𝑐1+2+3 0 𝐿𝐿1(𝑠𝑠1𝑣𝑣2 − 𝑐𝑐1𝑠𝑠2) + 𝐿𝐿1+2(𝑠𝑠1+2𝑣𝑣3 − 𝑐𝑐1+2𝑠𝑠3)

0 0 1 0
0 0 0 1

��

1 0 0 0
0 1 0 0
0 0 1 𝑞𝑞4
0 0 0 1

��

𝐿𝐿1+2+3
0
𝑧𝑧0
1

� 

= �

𝑐𝑐1+2+3 −𝑠𝑠1+2+3 0 𝐿𝐿1(𝑐𝑐1𝑣𝑣2 + 𝑠𝑠1𝑠𝑠2) + 𝐿𝐿1+2(𝑐𝑐1+2𝑣𝑣3 + 𝑠𝑠1+2𝑠𝑠3)
𝑠𝑠1+2+3 𝑐𝑐1+2+3 0 𝐿𝐿1(𝑠𝑠1𝑣𝑣2 − 𝑐𝑐1𝑠𝑠2) + 𝐿𝐿1+2(𝑠𝑠1+2𝑣𝑣3 − 𝑐𝑐1+2𝑠𝑠3)

0 0 1 𝑞𝑞4
0 0 0 1

��

𝐿𝐿1+2+3
0
𝑧𝑧0
1

� 

To simplify, we apply trigonometric transformations such as c1+2+3 = c1+2v3 - s1+2s3. 

= �

𝐿𝐿1𝑐𝑐1 + 𝐿𝐿2𝑐𝑐1+2 + 𝐿𝐿3𝑐𝑐1+2+3
𝐿𝐿1𝑠𝑠1 + 𝐿𝐿2𝑠𝑠1+2 + 𝐿𝐿3𝑠𝑠1+2+3

𝑞𝑞4 + 𝑧𝑧0
1

� 

We therefore obtain: 
𝒙𝒙 = 𝐿𝐿1𝑐𝑐1 + 𝐿𝐿2𝑐𝑐1+2 + 𝐿𝐿3𝑐𝑐1+2+3  
𝒚𝒚 = 𝐿𝐿1𝑠𝑠1 + 𝐿𝐿2𝑠𝑠1+2 + 𝐿𝐿3𝑠𝑠1+2+3 

𝒛𝒛 = 𝑞𝑞4 + 𝑧𝑧 0 
 
Like the previous exercise, this one makes the link between DGM, homogeneous transformation matrix and position 
of the robot/of the robot segments; and illustrates the link between DGM and generalized coordinate system. 
 

Exercise 3 
The homogeneous matrices K5 and K6 of the DGM of the PUMA robot arm are given in the lecture slides. Give the 
missing matrices Ki, for i = 1,2,3,4. 
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Exercise 3 – Solution 
The homogeneous matrices of the PUMA DGM (according to the generalized coordinate system of the course) are 
as follows: 

K4 is the homogeneous matrix corresponding to the rotation θ4 around an axis parallel to the z axis and passing 
through the point P40= [D3, 0, 0].  

𝐾𝐾4 = �𝑅𝑅𝑧𝑧4 𝑝𝑝40 − 𝑅𝑅𝑧𝑧4 𝑝𝑝40
0 1 � 

𝑝𝑝40 − 𝑅𝑅𝑧𝑧4 𝑝𝑝40 = �
𝐷𝐷3
0
0
� −   �

𝑐𝑐4 −𝑠𝑠4 0
𝑠𝑠4 𝑐𝑐4 0
0 0 1

�  �
𝐷𝐷3
0
0
� = �

𝐷𝐷3 − 𝐷𝐷3 𝑐𝑐4 
−𝐷𝐷3𝑠𝑠4

0
� = �

𝐷𝐷3𝑣𝑣4
−𝐷𝐷3𝑠𝑠4

0
�   

Thus:  

𝑲𝑲𝟒𝟒 =  �

𝑐𝑐4 −𝑠𝑠4 0 𝐷𝐷3𝑣𝑣4
𝑠𝑠4 𝑐𝑐4 0 −𝐷𝐷3𝑠𝑠4
0 0 1 0
0 0 0 1

� 

 

K3 is the homogeneous matrix corresponding to the rotation θ3 around an axis parallel to the x axis and passing 
through the point P30= [0, 0, L2]. 

𝐾𝐾3 = �𝑅𝑅𝑥𝑥3 𝑝𝑝30 − 𝑅𝑅𝑥𝑥3 𝑝𝑝30
0 1 � 

𝑝𝑝30 − 𝑅𝑅𝑥𝑥3𝑝𝑝30 = �
0
0
𝐿𝐿2
� −   �

1 0 0
0 𝑐𝑐3 −𝑠𝑠3
0 𝑠𝑠3 𝑐𝑐3

�  �
0
0
𝐿𝐿2
� = �

0
𝐿𝐿2𝑠𝑠3

𝐿𝐿2(1 − 𝑐𝑐3)
� = �

0
𝐿𝐿2𝑠𝑠3
𝐿𝐿2𝑣𝑣3

�   

Therefore:  

𝑲𝑲𝟑𝟑 =  �

1 0 0 0
0 𝑐𝑐3 −𝑠𝑠3 𝐿𝐿2𝑠𝑠3
0 𝑠𝑠3 𝑐𝑐3 𝐿𝐿2𝑣𝑣3
0 0 0 1

� 

K2 is the homogeneous matrix corresponding to the rotation θ2 around the axis x.  

𝑲𝑲𝟐𝟐 =  �

1 0 0 0
0 𝑐𝑐2 −𝑠𝑠2 0
0 𝑠𝑠2 𝑐𝑐2 0
0 0 0 1

� 

K1 is the homogeneous matrix corresponding to the rotation θ1 around the axis z.  

𝑲𝑲𝟏𝟏 =  �

𝑐𝑐1 −𝑠𝑠1 0 0
𝑠𝑠1 𝑐𝑐1 0 0
0 0 1 0
0 0 0 1

� 
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Exercise 4 
Find the IGM (Inverse geometric model) of a 2 
DOF planar robot (see figure below): given x and 
y, what are 𝜃𝜃1 and 𝜃𝜃2? 

x = L1c1 + L2c1 + 2 

y = L1s1 + L2s1 + 2 

Hint: use the trigonometric formulas for the sine 
and cosine of the sum of two angles, as well as the 
one of the sum of squares of sine and cosine. 

 

Exercise 4 – Solution 
As for the first exercise, we consider the simple planar manipulator with two segments. It is asked to find the angles 
𝜃𝜃1 and 𝜃𝜃2 from a given position (x, y). 
We know the DGM: 
𝑥𝑥 = 𝐿𝐿1𝑐𝑐1 + 𝐿𝐿2𝑐𝑐1+2 
𝑦𝑦 = 𝐿𝐿1𝑠𝑠1 + 𝐿𝐿2𝑠𝑠1+2  
 
We also know that: 
1 = 𝑐𝑐2 + 𝑠𝑠2 

Using the law of cosines we see that the 
angle 𝜃𝜃2 is given by: 

𝑐𝑐2 =  𝑥𝑥
2+𝑦𝑦2−𝐿𝐿1

2−𝐿𝐿2
2

2𝐿𝐿1𝐿𝐿2
  

𝑠𝑠2 =  ±�1 − 𝑐𝑐22 

Hence, 𝜃𝜃2 can be found by: 

𝜃𝜃2 = arctan
±�1 − 𝑐𝑐22

𝑐𝑐2
 

 

 
 
 

The choice of ±  is arbitrary but is important (it 
must be consistent) for pairs of final solutions. 
Moreover, finding the angle of 𝜃𝜃2 by using 
arctan function is advantageous since it is 
recovering both elbow-up and elbow-down 
solutions by choosing the positive and 
negative signs, respectively.  

 

L
1
 

L2 

y 

x 𝜃𝜃1 

𝜃𝜃2 

(x, y) 

y 

x 
𝜃𝜃1 

𝜃𝜃2  

L
1
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 𝜃𝜃1 can be defined as 𝜃𝜃1 = 𝛼𝛼 − 𝛽𝛽 where  

𝛼𝛼 =  arctan �𝑦𝑦
𝑥𝑥
�  

𝛽𝛽 =  arctan �
𝐿𝐿2𝑠𝑠2

𝐿𝐿1 + 𝐿𝐿2𝑐𝑐2
� 

Therefore, 

𝜃𝜃1 = arctan �
𝑦𝑦
𝑥𝑥
� −  arctan �

𝐿𝐿2𝑠𝑠2
𝐿𝐿1 + 𝐿𝐿2𝑐𝑐2

� 

 

 

 
Although the solution is complete like this, we 
need to be careful about the quadrant of the 
(𝑥𝑥,𝑦𝑦) position since arctan function is used to 
calculate the angles 𝜃𝜃1and 𝜃𝜃2.  

Hint: While programming you can use atan2() 
instead of atan() function, which will handle 
the determination of the quadrant.  

 

 

 
 
 
Exercise 5 
Consider the two sequences of exercises 1 and 2: 

Rz(90°) → Ry(90°) 

Ry(90°) → Rz(90°) 

For each of these sequences: 
1. Determine the resulting corresponding quaternion. 
2. Deduce: 

(a) the corresponding angles of rotation. 
(b) the corresponding unit axes of rotation. 

L1 

L2 

y 

x 𝜃𝜃1 

𝜃𝜃2 

(x, y) 

α 
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Solution 5 
1. We start by calculating Qy90° and Qz90°, the quaternions corresponding respectively to Ry(90°) and Rz(90°) : 

For Qy90°, we have: 

 
 
(λy is the axis of rotation whose norm is sin (θy/2)) 
 

           

And finally:  

 

For Qz90°, we have: 

 
 
(λz is the axis of rotation whose norm is sin (θz/2)) 

 

 
And finally: 

 

We notice that the two quaternions are unitary (the opposite would have been surprising). 

We then calculate the two sequences by multiplying the quaternions (product which is of course non-
commutative): 

First sequence: Rz(90°) → Ry(90°) 

Q1 = Qy90°Qz90° 
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Second sequence : Ry(90°) → Rz(90°) 

Q2 = Qz90°Qy90° 

 

The two resulting quaternions are unitary as expected. 
 
 

2.  (a) The calculation of the angles is given below:  
First sequence: Rz(90°) → Ry(90°) 

 

⇒ 𝜃𝜃1 =
2𝜋𝜋
3
𝑟𝑟𝑟𝑟𝑟𝑟 = 120° 

      Second sequence: Ry(90°) → Rz(90°) 

 

⇒ 𝜃𝜃2 =
2𝜋𝜋
3
𝑟𝑟𝑟𝑟𝑟𝑟 = 120° 

 

(c) Obtaining the (unitary) axes is as follows: 
 

First sequence: Rz(90°) → Ry(90°) 

 

Second sequence: Ry(90°) → Rz(90°) 
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